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Abstract

Amorphous Pb-Mo-S coatings 200 to 510 nm thick were deposited by dual ion-

beam deposition (IBD) onto steel and Si substrates. Coating wear studies were performed

using ball-on-flat reciprocating sliding with steel ball counterfaces in dry air. Tests were

run between 1 and 100000 sliding cycles, and wear depths measured by interference

microscopy. Morphology and chemistry of the as-deposited coatings and worn surfaces

were investigated with optical microscopy, micro-Raman spectroscopy and cross-section

high resolution transmission electron microscopy (HRTEM). Pb-Mo-S coatings were

found to be quite wear resistant; no more than 25% of the coating thickness was removed

by 10000 sliding cycles. Two wear mechanisms were identified. At the nanometer scale,

wear proceeded in a two-part process: transformation of the coating surface to MoS2, then

layer-by-layer removal of MoS2. At the micrometer scale, wear occurred by plowing. The

long endurance of Pb-Mo-S coatings was attributed to slow wear of the coatings, with

lubricant redistribution processes playing a minor role.
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1. Introduction

Advances in solid lubrication by MoS2 have been made by investigating the

relationships between processing, microstructure, friction, wear and endurance. Studies

of sputter deposited MoS2 showed that coating microstructure plays a large role in both

wear behavior and coating lifetime. For example, early sputter deposited MoS2 coatings

formed platelets having a columnar, edge oriented (basal plane perpendicular to

substrate), porous microstructure [1]. Because of this structure, the coatings lost platelets

through fracture during sliding [2] as well as deformed by tilting or bending of columnar

platelets [3-5], as observed by scanning electron microscopy. Fleischauer and co-workers

[4, 5] used x-ray diffraction (XRD) to confirm and quantify reorientation after sliding.

Hilton et al. [6] later showed that the degree of reorientation is dependent on the initial

microstructure. The sputtered MoS2 coatings, like earlier burnished MoS2 films, wore

rapidly in sliding and rolling contact [4, 6-10]. More recently, coatings with dense, basal

oriented microstructures have been produced via rf-sputtering [11], ion beam assisted

deposition (IBAD) [12-14] and pulsed laser deposition (PLD) [15, 16]. However, wear

studies of IBAD MoS2 coatings [17, 18] determined that they, too, wore rapidly early in

sliding life, despite their high endurance.

While processing advances enhanced MoS2 coating microstructure and

endurance, a number of other improvements in sputter deposited MoS2 coatings were

achieved through co-deposition with a variety of metals [7, 19, 20], laser alloying with

Au [21], and multilayer deposition (alternating metals with MoS2) [22, 23]. Increased

crystallite size and density [19], lower friction [7, 20, 21], and retarded growth of edge

oriented crystallites [22] were all observed. More recently several groups have

demonstrated that coating endurance could be further improved by co-deposition of PbO

[20, 24], Pb [25], or Ti [26] with MoS2 using PLD, IBAD, and unbalanced magnetron

processing, respectively. X-ray diffraction and Raman studies [24, 25, 27] showed that

PbO and Pb alloying produced amorphous coatings, but that sliding transformed the

surface to MoS2. This was demonstrated conclusively by Dunn et al. using cross section

high resolution transmission electron microscopy (HRTEM) [28].

At present, it is not understood why the amorphous films perform as well as (or

even better than) the crystalline films. In this paper, we investigate the wear behavior of
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amorphous Pb-Mo-S coatings. Optical microscopy and interferometry are used to

characterize the worn surfaces’ morphology and wear. Raman spectroscopy and cross

section HRTEM are used to examine the coating structure and wear track surfaces.

Results are discussed in terms of wear mechanisms at the nanometer and micron size

scales and compared to previous results from unalloyed, crystalline MoS2 coatings.

2. Experimental

Pb-Mo-S coatings were deposited by dual ion-beam deposition (IBD) in a vacuum

chamber equipped with a Kaufman argon ion source; a full description of the IBD

deposition process for these coatings is given elsewhere [25]. This process is

considerably simpler than the IBAD counterpart used to produce MoS2 coatings: no assist

gun was used, and the deposition stage was not heated (a small temperature rise to ~60°C
was observed during deposition). The coatings were deposited on various polished

hardened steel substrates (M50, 52100, 440C and AMS 5749), as well as as-received,

polished Si. Some of the coatings also had a thin (30-40 nm) TiN interlayer. Coatings

contained between 4 and 26 at.% Pb; thicknesses ranged from 200 to 510 nm.

Friction and wear behavior of the coatings on steel were studied using the

reciprocating sliding test methodology [17, 18] that we refer to as “stripe” testing. A

schematic diagram of typical tracks resulting from stripe tests is shown in Fig. 1. Each

track was run a length of 5 mm for the first n = {1,3,10,30,100,… } cycles, and then

without lifting the ball, the stroke length was shortened to 3 mm for an additional 2n

cycles; a new ball was used for each track. The resulting tracks each have 3 turnaround

regions (or endpoints): one at each end of the track and another in between, from the

shortened track length. Sliding tests were performed in dry air (RH <2%) using a ball-on-

flat tribometer with 6.35 mm diameter 52100 steel balls, sliding speed of 4 mm s-1 and an

initial load of 9.8 N (mean Hertzian pressure PH = 0.92 GPa). Friction coefficients were

monitored throughout the tests, and failure, if reached, was defined as the number of

sliding cycles the coating endured before the average friction coefficient for a single

cycle reached 0.2.

Reciprocating sliding tests were also performed on Pb-Mo-S coated Si substrates

to allow preparation of HRTEM samples of wear track surfaces. However, in place of
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stripe tests, 10 separate sliding tests (using a new ball for each test) were carried out,

where each new track slightly overlapped the previous track. This procedure produced a

wear scar ~1 mm wide, which ensured that the TEM analysis area would contain worn

coatings surfaces. These tests were performed at similar sliding conditions to those

described above; since the substrate was Si, the mean PH was 0.82 GPa.

After sliding tests, wear tracks on the coatings and transfer films on the balls were

examined optically by interference (Nomarski) microscopy. Coating wear track depths

(to within 10 nm) were determined using Michelson interferometry. Micro-Raman

spectroscopy of ball transfer films was performed using a Renishaw imaging microscope

equipped with a low-power (~25 mW) Ar+ laser (514 nm) with 1 cm-1 spectrometer

resolution and 2 µm spatial resolution at the sample surface. Cross-section HRTEM

samples were made from the wear tracks on Si samples via standard techniques. Samples

were cleaved normal to the wear track plane and glued together with a two-part epoxy,

then mechanically thinned, dimpled, and ion milled with 5.0 keV Ar+ ions until

perforation. Cross-sections were made in both the longitudinal (along the sliding

direction) and transverse (across the width of the track) directions. Wear track cross-

sections were examined using a Hitachi H-9000 operated at 300 keV in bright-field (BF)

imaging and selected area electron diffraction (SAED) modes.

3. Results

3.1 Coating friction and wear depths

Friction coefficients were high during the first several passes (>0.1), but dropped

below 0.05 by 10 to 100 cycles (depending on the particular coating) and were similar to

those we reported previously [25]. Figure 2a shows wear track depths as a function of

reciprocating sliding cycle from tests performed on Pb-Mo-S coatings with four different

thicknesses; to more clearly display changes in wear depths before 10000 cycles, a semi-

log plot of the wear data is shown in Fig. 2b. No measurable wear was detected before

100 cycles for any of the coatings; two coatings didn’t have measurable wear until 1000

to 3000 sliding cycles. By 1000 cycles, cumulative wear rates were below 0.07 nm/cycle,

and less than 0.005 nm/cycle by 10000 cycles. Total wear for all of the coatings was low

up to 30000 cycles: none were worn more than 50% of the original coating thickness, and
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all but two of the many sliding tests resulted in less than 100 nm coating wear in the

tracks. Remarkably, the 500 nm thick coating exhibited a wear depth of only 40 nm by

32000 cycles.

3.2. Wear scar analyses

3.2.1. Optical analyses of coating wear tracks and ball transfer films

All wear tracks and ball transfer films were examined optically. Evolution of wear

track and ball transfer films was qualitatively similar for the four coatings; micrographs

from the 300 nm thick coating are representative of their behavior.

Optical micrographs of typical worn track surfaces (from the 300 nm coating) are

shown in Fig. 3, along with representative interferometry profiles. Between 1 and 100

cycles (Fig. 3a), tracks were nearly invisible and could only be identified by slight

burnishing of the coating and an occasional debris particle. No wear could be seen in the

track profile. By 300 to 3000 cycles (Fig. 3b), narrow, shallow scratches were seen in the

micrograph as well as in the interferometry profile. Some scratches were up to 50 nm

deep. Small, loose debris particles were found along the sides and at the ends of the

tracks, increasing in quantity as sliding progressed. By 9000 cycles (Fig. 3c), scratches

were more pronounced, and a noticeable furrow (~50 nm deep) was observed on the

track. Redeposited wear debris was found in the track, and loose debris along the sides

and at ends of the track. Between 40000 and 60000 cycles (Fig. 3d), centers of wear

tracks appeared roughened. Copious amounts of fine debris particles lined the track sides

and ends.

Turnaround regions of the wear tracks (at either end, and one in the middle from

the shorter portion of the track, as diagrammed in Fig. 1) were also examined. An

example from a middle turnaround point for the 300/900 cycle track is shown in Fig. 4. In

regions directly under the ball turnaround region, no significant buildup of redeposited

debris was observed in any of the wear tracks. Piles of fine wear debris particles were

observed beyond the turnaround points at track ends beyond 100 sliding cycles,

increasing in quantity as sliding progressed. As can be seen in Fig. 4, scratches seen on

the right side of the track (after 300 cycles) were unchanged after 600 additional sliding

cycles. The similarity of the scratches between 300 and 900 cycles suggests that

scratching was a discrete event and occurred infrequently.
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The evolution of the ball transfer films formed on 52100 steel from 9 to 40000

cycles is shown in Fig. 5a-d. Virtually no visible material transfer could be found

between 1 and 30 passes (Fig. 5a). By 90 cycles, a small amount of transfer material was

observed around the edges of the contact zone; the center of the contact zone remained

smooth in appearance. By 300 cycles (Fig. 5b) a smooth, continuous film formed over the

ball surface, with thicker debris pads at the edges of the contact zone. The transfer film

appearance is similar at 900 cycles. Some fine particles were observed on the ball surface

close to the contact zone. As sliding progressed, the smooth transfer film increased in size

(Fig. 5c) and more fine particulate debris were scattered around the contact. Ball transfer

films at 40,000 to 60,000 cycles (Fig. 5d) exhibited thick transfer films with copious fine

debris particles distributed over the ball surface outside the contact zone.

3.2.2. Micro-Raman spectroscopy of worn surfaces

Raman analysis was performed on wear tracks. Burnished areas usually showed

spectra of the as-deposited coating; however, in some locations, bands consistent with

crystalline MoS2 [29] were seen after as few as 100 cycles. Some debris particles showed

spectra similar to as-deposited coating and some, to the MoS2 bands, while others

fluoresced strongly. Examples of spectra from inside a 3000 cycle track, along with as-

deposited coating, are shown in Fig. 6.

Figure 7 shows Raman spectra from 9, 300 and 9000 cycle ball wear scars

previously presented in Figure 5. Ball wear scars exhibited the MoS2 bands inside and

outside the contact zone. Most importantly, the bands were found inside the contact zone

after only 9 cycles. This demonstrates that a thin transfer film, although transparent, was

present in the ball contact and suggests that the transfer film had transformed from

amorphous to crystalline MoS2 by 9 cycles. Not all regions on the ball wear scars showed

MoS2: like the wear tracks, some locations inside and outside the ball contact zone

exhibited Raman spectra similar to the as deposited coating or fluoresced (Fig. 6). No

evidence for Mo or Pb oxidation products (MoO2, MoO3 or PbMoO4 ) was found.

3.2.3. TEM analyses of wear scar cross sections

Cross-section HRTEM was performed on tracks worn in a 200 nm coating

deposited on Si. Figure 8 shows a 100 cycle Pb-Mo-S wear track; the sliding direction is

perpendicular to the plane of the image. The interface between the lighter epoxy region
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(upper half) and darker Pb-Mo-S (lower half) is the wear track surface. Below the wear

track surface, the microstructure of the Pb-Mo-S coating remained unchanged from the

as-deposited microstructure (e.g. amorphous), showing no long range order via HRTEM

[28] and consistent with previous x-ray diffraction and micro-Raman spectroscopy

studies [25]. Horizontal fringes ~5-10 nm long were observed at the wear track surface;

an example is marked in the image between arrows. The spacing between fringes for this

patch is ∼  0.65 nm; fringe spacing of other patches ranged up to 0.70 nm.

Figure 9 is a HRTEM image of a portion of the Pb-Mo-S track after 1000 cycles;

the sliding direction, in this case, is parallel to the image plane. At the track surface is a

crystalline layer, 2 to 4 fringes thick; arrows mark an area where a segment of the layer

has been pulled away from the surface. In addition, fringes ~3-5 nm long can be seen

below the sliding surface and are marked by the letter “s”. As in the 100 cycle track, the

subsurface Pb-Mo-S remained amorphous. In other regions of the 1000 cycle track (not

shown), crystalline debris (10-12 nm thick) was found on top of the horizontal fringes at

the wear track surface [28].

Spacings between the layers observed in the HRTEM images are somewhat

greater than that between basal planes of molybdenite (0.615 nm) [30], but are consistent

with the basal plane spacings found in MoS2 films deposited by rf-sputtering [31] and

ion-beam assisted deposition (IBAD) [32, 33]. The layers, then, are consistent with basal-

oriented MoS2.

4. Discussion

Wear scar analysis of steel sliding against Pb-Mo-S coatings in dry air revealed

both nanometer scale and micrometer scale processes associated with wear. HRTEM

studies of the wear tracks gave direct evidence that low speed, high stress sliding —  a

tribomechanical process —  can convert amorphous Pb-Mo-S into crystalline MoS2. The

transformation, previously inferred from Raman spectroscopy of wear scars on Pb-O-Mo-

S [24] and Pb-Mo-S [25] alloys, has now been verified. Moreover, HRTEM shows that

the transformation occurs by creating basal-oriented layers at the outermost layers of the

track. An extended discussion of the transformation is given elsewhere[28].
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HRTEM images also give evidence, for the first time, that wear of MoS2 can take

place layer-by-layer at the atomic level. Fig. 9 shows a basal-oriented S-Mo-S layer

"lifting" off another S-Mo-S layer at the weak (van der Waals) interface. The layers are

removed from the wear track surface and transferred to the ball surface, as demonstrated

by Raman spectroscopy in Fig. 7. The transformation, and removal, of MoS2 layers

occurred after as few as 9 sliding cycles. The removal of layers of MoS2 can be explained

by the lack of strong bonding between S-Mo-S layers, which are easily sheared and/or

removed.

On a micrometer scale, narrow scratches (Fig. 3b) and corresponding lumps of

debris on ball surfaces and at track ends (Fig. 4) indicate a plowing wear mechanism.

Debris showing featureless Raman spectra (as in the as-deposited coating) are also

consistent with plowing wear. While we don’t know what causes plowing events, they

are important, but infrequent, events in the sliding process. As shown in Fig. 4, no new

scratches are observed even though 600 cycles had elapsed between the left and right

portions shown on the wear tracks. Moreover, scratches did not heal or fill in during

sliding.

The percentage of coating worn for the Pb-Mo-S coatings was calculated from the

wear depth and coating thickness data and is plotted in Fig. 10. None of the four coatings

showed more than 25% coating loss by 10000 cycles. No distinct rapid wear region was

identifiable in the plots or by morphological changes on worn surfaces. The low wear of

these coatings is consistent with layer-by-layer removal of MoS2 crystallites and

infrequent, shallow plowing events. This wear behavior is in sharp contrast to that

observed under identical sliding conditions for crystalline IBAD MoS2 coatings: no wear

could be measured during the first 100 cycles, but rapid wear (loss of 50 to 80% of

coating thickness) occurred between 100 and 1000 cycles [17, 18]. Rapid wear during the

early stages of sliding and rolling is typical of crystalline MoS2 [4, 6-10]. Rapid wear of

sputtered MoS2 may result from fracture of crystallites [7] and can be influenced by

initial microstructure [6]. Subsurface crack formation and subsequent delamination of

large flakes of coating has been observed in some dense MoS2 coatings [34, 35] but has

not been observed for IBAD MoS2 coatings [36]. None of these fracture behaviors was

seen in the Pb-Mo-S coatings, either at the micrometer or nanometer scale.
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It is not clear why the Pb-Mo-S coatings resist the rapid wear seen in MoS2. A

microstructure devoid of MoS2 planes in the bulk might explain the low wear rate of Pb-

Mo-S coatings, especially if this microstructure hinders fracture within the coating.

However, we have examined dense, basal oriented IBAD MoS2 coatings amorphized by

ion-irradiation and found that the amorphized MoS2 coatings wore more rapidly than the

crystalline IBAD MoS2 parent coatings [37]. Thus, the amorphous nature of the Pb-Mo-S

coatings does not necessarily explain their wear resistance.

Can the wear resistance (and endurance) of the Pb-Mo-S be explained by the third

body processes responsible for the long life and low friction of IBAD MoS2? [17, 18]

Both Pb-Mo-S and IBAD MoS2 produced transfer films on the uncoated ball, which

accounts for low friction coefficient throughout sliding life; moreover, both generated

loose debris as the coating wore. However, debris from MoS2 coatings built up reservoirs

of MoS2 which resupplied lubricant to the rapidly wearing track. This replenishment

accounted for the long endurance, given that most of the coating was lost from the wear

track during the first 10% of sliding life. In contrast, debris from Pb-Mo-S coatings were,

for the most part, ejected from the sliding contact. Buildup of redeposited debris was

minimal, and healing or filling in of scratches was not observed; all of these limited third

body participation in a resupply process. On the other hand, the limited amount and size

of debris generated may be advantageous for bearing environments where torque bumps

and debris generation are known to contribute to performance problems [38].

Therefore, third body processes for the Pb-Mo-S coatings are not as important to

endurance as for IBAD MoS2. Instead, we attribute the high endurance of the Pb-Mo-S

coatings simply to slow wear of the coating. Transformation of surface Pb-Mo-S to MoS2

layers, and subsequent transfer of MoS2 to ball surfaces, provided an easily sheared

interface. Since these low shear strength interfaces were only found at or near the coating

surface, just one or several layers were lost at a time. This, plus the low occurrence of

plowing events, accounts for the low wear rates (and hence high endurance) observed.

Several issues remain unanswered by the present study. First, what is the role of

Pb in the wear resistance of these coatings? Second, are the transfer films and wear debris

generated in sliding against Pb-Mo-S coatings more benign than those formed from

contacts with crystalline MoS2 coatings? Maybe Pb-Mo-S wears more slowly because the
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microstructures are not susceptible to delamination. Alternately, perhaps increased

adhesion of transfer material to the ball surfaces due to the presence of Pb may play a

role in preventing coating damage.

5. Conclusions

Pb-Mo-S coatings were found to be remarkably wear resistant. Two wear

mechanisms were identified: layer-by-layer removal of MoS2 and plowing. At the

nanometer scale, wear proceeded in a two-part process: transformation of the coating

surface to MoS2, then layer-by-layer removal of MoS2. This process was observed by as

few as 9 sliding cycles, where Raman microscopy detected MoS2 in an optically

transparent transfer film. Wear of the Pb-Mo-S coatings also occurred, on a microscopic

scale, by plowing processes. The long endurance of the Pb-Mo-S coatings was attributed

to slow wear of the coatings, with redistribution processes playing a minor role as

compared to MoS2 coatings.
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Figure Captions

Fig. 1. Schematic diagram of reciprocating sliding “stripe” testing series for this wear
study. Arrow marked “start” indicates test starting location, turnaround points are
indicated by open circles, and sliding cycles for the track segments are numbered.

Fig. 2. Pb-Mo-S coating wear track depths measured by interference microscopy plotted
on a (a) linear and (b) log scale.

Fig. 3. Optical micrographs and interferometry profiles of Pb-Mo-S wear tracks after (a)
100, (b) 1000, (c) 9000, and (d) 40000 sliding cycles.

Fig. 4. Wear track segments run to 900 (left side) and 300 (right side) reciprocating
sliding cycles at the middle turnaround region of the wear track. Two scratches
are evident by 300 cycles, and are not found to be measurably deeper or increased
in number after 600 additional cycles. The debris at the center of the micrograph
was ejected at the end of the shortened section (900 cycles) of the wear track.

Fig. 5. Optical micrographs of ball transfer films after (a) 9, (b) 300, (c) 9000 and (d)
40000 cycles against Pb-Mo-S coating.

Fig 6. Micro-Raman spectra of as-deposited coating as well as different regions of Pb-
Mo-S wear track surfaces and ball transfer films after 3000 sliding cycles.

Fig. 7. Micro-Raman spectra of ball transfer films formed after sliding against Pb-Mo-S
coatings for 9, 300, and 9000 cycles.

Fig. 8. Cross-section HRTEM micrograph of Pb-Mo-S wear track surface after 100
cycles (sliding direction along epoxy-Pb-Mo-S interface, normal to the image
plane). The Pb-Mo-S coating remains largely unchanged except for small patches
of transformed MoS2 at the sliding interface.

Fig 9. Cross-section HRTEM micrograph of Pb-Mo-S wear track surface after 1000
cycles (sliding direction parallel to image plane). To the left and marked with
arrows is a region where two basal planes of MoS2 have been pulled up. Also,
subsurface patches of MoS2 are marked by the letter “s”.

Fig 10. Pb-Mo-S coating wear track depths from Fig. 2 plotted as percent of coating
worn.



Figure 1. Schematic of reciprocating sliding ‘stripe’ testing series for
this wear study. Arrow marked “start” indicates test starting location,
turnaround points are indicated by open circles, and sliding cycles for
the track segments are numbered.



a) b)

Figure 2. Pb-Mo-S coating wear track depths measured by interference
microscopy plotted on (a) linear and (b) semi-log scales.
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Figure 3. Optical micrographs
and interference microscopy
profiles of IBD Pb-Mo-S wear
tracks worn to (a) 100, (b) 1000,
(c) 9000, and (d) 40000
reciprocating sliding cycles
in dry air.



Figure 4. Wear track segments run to 900 (left side) and 300 (right side) 
reciprocating sliding cycles at the center turnaround region of the wear 
track. Two scratches are evident by 300 cycles, and are not found to be 
measurably deeper or increased in number after 600 additional sliding 
cycles. The debris at the center of the micrograph was ejected at the end 
of the shortened section (900 cycles) of the wear track. 
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Figure 5. Optical micrographs of ball transfer films after (a) 9, (b) 300, 
(c) 9000 and (d) 40000 cycles against Pb-Mo-S coating.
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Figure 6. Micro-Raman spectra of as-deposited coating as well as 
different regions of Pb-Mo-S wear track surfaces and ball transfer 
films after 3000 sliding cycles.
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Figure 7. Micro-Raman spectra of ball transfer films formed after 
sliding against Pb-Mo-S coating for 9, 300, and 9000 cycles.



Figure 8. Cross-section HRTEM micrograph of Pb-Mo-S wear track 
surface after 100 sliding cycles (sliding direction along epoxy-Pb-Mo-S 
interface, normal to the image plane). The Pb-Mo-S coating remains largely 
unchanged except for small patches of transformed MoS2 at the sliding 
interface (between arrows).



Figure 9. Cross section HRTEM micrograph of Pb-Mo-S wear track 
surface after 1000 sliding cycles (sliding direction parallel to image 
plane). To the left and marked with arrows is a region where two 
basal planes of MoS2 have been pulled up. Also, subsurface patches 
of MoS2 are marked by the letter “s”.
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Fig. 10. Pb-Mo-S track depths from Fig. 2 plotted
as percent of coating worn.


